Alcoholic Liver Failure

Kerrie Parsons

University of Massachusetts Dartmouth College of Nursing and Health Sciences

NUR 512: Integrated Physiologic Knowledge in Patient Care

MaryBeth Sosa PhD, RN, CNE

April 26, 2023

Alcoholic Liver Failure

Alcoholic liver disease (ALD) is a chronic and potentially life-threatening condition that results from excessive alcohol consumption over an extended period. The World Health Organization (WHO) identifies ALD as a significant health problem globally, and it is estimated to be responsible for over 3 million deaths annually. ALD has a spectrum of presentations, ranging from asymptomatic hepatic steatosis to the end-stage complications of cirrhosis. Although the incidence of ALD is related to the amount of alcohol consumed, the risk of developing ALD also depends on various factors such as gender, genetics, and nutritional status. This paper aims to provide a case study and overview of ALD, including its pathogenesis, clinical presentation, diagnosis, and management.

Background

Heavy alcohol consumption, which can be defined as consumption above 40 grams of pure alcohol per day over a sustained period, leads to ALD (Huang et al., 2023). The liver is responsible for filtering toxins and waste products from the body, including alcohol. When alcohol is consumed in excess, it can cause inflammation and damage to the liver cells. Over time, repeated damage can lead to scarring and fibrosis, which can progress to cirrhosis and liver failure. ALD is a major cause of morbidity and mortality worldwide, accounting for a significant proportion of liver-related deaths. It is estimated that 90% of heavy drinkers will develop some degree of liver damage, although the severity of the disease can vary widely among individuals (Osna et al., 2017). While the exact mechanisms underlying ALD pathogenesis are not fully understood, various factors such as genetics, gender, and nutritional status have been implicated in its development. Additionally, the amount and pattern of alcohol consumption can influence

the risk of developing ALD. Understanding the pathogenesis and risk factors of ALD is crucial for the development of effective prevention and treatment strategies.

Epidemiology

The World Health Organization (WHO) reports the incidence of ALD to be responsible for 5.3% of all deaths. In the United States, ALD is responsible for up to 50% of all cases of chronic liver disease and is the third leading cause of preventable deaths. The prevalence of ALD varies depending on the population studied. The Center for Disease Control (CDC) reported states with the highest rate of mortality due to Liver Cirrhosis in the United States are New Mexico and South Dakota followed by Montana, Wyoming, Arizona, and Alaska. According to the National Institute on Alcohol Abuse and Alcoholism (NIAAA), up to 90% of heavy drinkers develop fatty liver, while 10-35% of heavy drinkers develop alcoholic hepatitis, and 8-20% of heavy drinkers develop cirrhosis. The outcomes of ALD are poor, up to 40% of people with alcoholic hepatitis will die within one month, and up to 80% will die within six months if they continue to drink. Furthermore, those with alcoholic cirrhosis have a five-year survival rate of only 50% (Shah et al., 2019). Demographically, ALD affects both men and women, though women are more susceptible to develop the disease (Huang et al., 2023). However, men are twice more likely to die from liver disease and cirrhosis over woman (Guy & Peters, 2013). The disease is more common in those aged 40-60 years old, although it can occur at any age. ALD is also more prevalent in certain populations, such as Native Americans, Alaskan Natives, and Hispanic Americans (Desai et al., 2018). The risk factors for developing ALD include gender, age, genetic factors, obesity, poor nutrition, and binge drinking (Huang et al., 2023). The CDC reports binge drinking to be more common among young male adults between the ages of 18-34.

Studies have shown that consuming more than four drinks per day for men or three drinks per day for women can increase the risk of developing ALD (Ventura-Cots et al., 2018).

Socioecological Considerations

Understanding the various socio-ecological factors is crucial in the development of effective prevention and treatment strategies for ALD. Socio-economic status, cultural attitudes towards alcohol consumption, access to healthcare, and the availability and affordability of alcohol are some of the key factors that influence the development of ALD (Xiao et al., 2020). For instance, low socio-economic status and limited access to healthcare may lead to delayed diagnosis and treatment, increasing the risk of disease progression and the incidence of mortality (Shah et al., 2019). There is a documented association between liver disease mortality and states with lower household income (Desai et al., 2018). Cultural attitudes towards alcohol consumption also play a role, as social norms may encourage excessive alcohol consumption, particularly in Hispanic cultures (Desai et al., 2018; Ventura-Cots et al., 2017). Homelessness and heavy alcohol consumption are also intertwined and has become an increased global public health concern that is associated with poor health outcomes and a shorter life expectancy. High levels of alcohol consumption intersect with the cause and effect of homelessness making it a difficult cycle to break (Ross-Houle & Porcellato, 2023).

Treatment of ALD requires socio-ecological considerations, as it involves addressing not only the physical symptoms but also the underlying socio-ecological factors that contribute to the disease.

Treatment may involve a multidisciplinary approach that includes medical interventions, lifestyle modifications, and social support. De Boer et al. (2023) reported a correlation between heavy drinking and an increase in depressive symptoms and found depression lessens when alcohol consumption is lighter. Social support may involve counseling and support groups like alcoholic anonymous, which can help patients address the social and psychological factors that contribute to the disease.

Alcoholic liver cirrhosis is a chronic and progressive liver disease that can have a devastating impact on a patient's health and quality of life. Let's take a closer look at the case of John Doe, a 48-year-old male construction worker who struggled with chronic alcoholism and developed advanced alcoholic liver cirrhosis.

The Life of John Doe - Alcoholic Liver Failure Case Study

Patient Background and History

John was a 48-year-old construction worker who began drinking as a teenager in High School. He played sports in his youth and after graduating High School he worked most of his life in stressful jobs with high physical demands and low employee control. He struggled with chronic alcoholism for most of his adult life. Due to his addiction, he lost multiple jobs and was unable to maintain steady employment. When in between jobs, John would be left without health insurance and rarely visited a doctor unless it was an emergency. He suffered a back injury from the last construction job he was employed at and eventually was eligible for disability welfare and public health insurance. He lived with his girlfriend in a small apartment and had an estranged relationship with his 20-year-old son. He discovered his liver disease when seeking medical treatment for his back injury and was referred by the emergency room physician to see a gastroenterologist for further work-up and treatment.

Genomic Factors

John was seen in the emergency room a few days after his back was injured at work and was referred to a gastroenterologist due to elevated liver enzymes in his blood test. The gastroenterologist ordered a Liver Biopsy which revealed the presence of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in his liver tissue. One of the major genetic factors

involved in alcoholic cirrhosis is the presence of variants in genes that affect alcohol metabolism, such as ADH and aldehyde dehydrogenase ALDH. These variants can result in a buildup of toxic byproducts of alcohol metabolism, leading to liver damage and cirrhosis (Huang et al., 2023). In addition, genome-wide association studies (GWAS) have identified several genetic loci that are associated with an increased risk of alcoholic cirrhosis, including genes involved in immune response and inflammation (Huang et al., 2023). Advances in genomic technologies have allowed for the identification of specific genetic alterations that occur in liver cells during the development of alcoholic cirrhosis. John's chronic alcohol consumption led to changes in the DNA methylation patterns of liver cells, which affected gene expression and contributed to the development of his cirrhosis.

Lifestyle Factors

John continued to drink alcohol even after being diagnosed with ALD at age 44, contributing to the morbid progression of his disease. He was encouraged to quit drinking by his gastroenterologist and educated on his prognosis. He was offered counseling and support for drinking cessation, but John remained noncompliant. He did not feel his drinking was problematic enough for him to stop drinking alcohol.

Although John was not Hispanic and did not live in a state with a high rate of mortality from ALD, he grew up in a poor fishing community, in a family with low-income, and a father who was an alcoholic. These factors predisposed John to ALD. Statistics show an association between ALD and low-income households (Desai et al., 2018). It is well established that children with problem-drinking parents have an elevated risk of a poor life situation and are more likely to become alcoholics, 40% of those children with the most severe exposure to parental drinking have mal-adapted relationship with their father (Ramstedt et al., 2023). John began binge

drinking in high school, which as discussed earlier in this paper, is another risk factor for developing ALD, and according to the CDC is more common among young men. He continued drinking daily throughout his adult life and did not believe that his alcohol consumption would harm his liver.

Risk Factors

Older age, degree and pattern of alcohol consumption, and genetic susceptibility are risk factors for the development of alcohol-associated cirrhosis (Huang et al., 2023). Certain genetic variations can affect how quickly or efficiently the body breaks down alcohol, which can lead to a build-up of toxic substances in the liver. Some individuals may have a genetic predisposition to inflammation in the liver, which can increase their risk of developing ALD (Huang et al., 2023). The immune system plays an important role in the development of ALD. Certain genetic variations can affect how the immune system responds to alcohol consumption, which can contribute to liver damage (Huang et al., 2023). Genetic data have yet to be integrated into routine clinical risk assessment models for patients with alcohol-associated liver disease (Huang et al., 2023).

As John's disease progressed, he struggled to hold a job and steady income, sometimes finding himself homeless. He was often without health insurance and rarely sought medical treatment, leaving his ALD undiagnosed and untreated for many years. ALD is often diagnosed late in the disease process due to lack of proper screenings and referrals, especially from detoxification centers, which contributes to the poor prognosis and late diagnosis of ALD (Shah et al., 2019). By the time John's ALD was diagnosed his disease was advanced and treatment options were limited.

Assessment

Physical Assessment

On his last assessment, John presented with severe abdominal distention from ascites. His skin and sclera were yellow due to the accumulation of bilirubin, and he had spider angiomas and bruising throughout his body resulting from decreased platelet levels. The palms of his hands were flushed due to the increased blood flow in the blood vessels of the skin. He had severe bilateral lower extremity edema, significant muscle wasting, and weakness due to his malnutrition and the breakdown of muscle tissue for energy (Tadokoro et al., 2023). He was forgetful and lethargic due to an accumulation of ammonia levels in his blood. He had difficulty with coordination and severe muscle spasms due to insufficient thiamine and magnesium levels (Tadokoro et al., 2023).

John had been a heavy drinker for many years, which led to the development of advanced alcoholic cirrhosis. He presented with classic symptoms such as jaundice, severe ascites, and hepatic encephalopathy, which are all common in patients with advanced cirrhosis.

Diagnostic Testing

Diagnostic testing for alcoholic liver cirrhosis typically involves a combination of laboratory tests, imaging studies, and a liver biopsy (Patel & Mueller, 2022). John's blood tests revealed elevated liver enzymes (AST and ALT), bilirubin, ammonia levels, and alkaline phosphatase due to his liver's inability to filter his blood. His platelet levels were low because of impaired production of clotting factors by the liver, sequestration of platelets in an enlarged spleen, and destruction of platelets in the bloodstream (Patel & Mueller, 2022). Hepatitis B and C, autoimmune hepatitis, and hemochromatosis were ruled out through blood testing. Imaging

studies such as ultrasound, CT scan, or MRI can be used to visualize the liver and assess for signs of cirrhosis, such as an enlarged liver, irregular liver surface, and signs of portal hypertension (Patel & Mueller, 2022). These imaging studies can also help rule out other liver diseases. A liver biopsy involves taking a small sample of liver tissue for examination under a microscope. This can help diagnose cirrhosis and determine the extent and severity of liver damage. A liver biopsy may also be used to rule out other liver diseases or assess for liver cancer (Patel & Mueller, 2022). John's liver biopsy confirmed Cirrhosis of the Liver, the most advanced stage of ALD (Patel & Mueller, 2022).

Pathophysiology

The first stage of Alcoholic Liver Disease is Hepatic steatosis, also known as fatty liver disease, which is a condition in which fat accumulates in the liver cells. When there is an excess of free fatty acids in the liver, they are metabolized to triglycerides and stored in the hepatocytes as lipid droplets. Normally, the liver can export excess lipids to other tissues, such as adipose tissue, for storage or use as an energy source. However, when this process is impaired, the lipid droplets accumulate in the hepatocytes, resulting in hepatic steatosis (Patel & Mueller, 2022). Excessive alcohol consumption can cause liver damage and impair the liver's ability to metabolize lipids.

Over time, the accumulation of lipids in the liver can lead to inflammation, oxidative stress, and fibrosis, which can progress to hepatocellular necrosis, and acute inflammation (Patel & Mueller, 2022). This stage is called alcoholic hepatitis, it is marked by eosinophilic fibrillar material that forms in swollen hepatocytes. Severe lobular infiltration of polymorphonuclear leukocytes occurs in this condition, this differs from other types of hepatitis where mononuclear cells localize around portal triads (Patel & Mueller, 2022).

The final stage of liver cirrhosis is characterized by a loss of functional liver cells, called hepatocytes, and an increase in fibrotic tissue, or scar tissue. As the liver is continuously damaged over time, there is an activation of stellate cells, which are normally responsible for storing vitamin A in the liver. These cells become activated and start producing collagen, a fibrous protein that forms the basis of scar tissue. The accumulation of scar tissue in the liver disrupts the normal architecture of the liver, which impairs its ability to function properly (Patel & Mueller, 2022). In addition, the loss of hepatocytes in cirrhosis leads to a reduction in the liver's ability to perform essential functions, such as detoxifying the blood and producing important proteins (Patel & Mueller, 2022). This can result in a range of complications, including hepatic encephalopathy, ascites, portal hypertension, and hepatorenal syndrome.

In the final stage of liver cirrhosis, there is a complete loss of functional liver tissue, and the liver can no longer regenerate or repair itself. This can result in end-stage liver disease, which can only be treated through liver transplantation (Patel & Mueller, 2022). Without treatment, the prognosis for end-stage liver disease, or liver cirrhosis, is poor and patients may experience severe symptoms and complications, which can ultimately lead to death.

Disease Management

Pharmacologic

Medications can be used in the management of liver cirrhosis. Diuretics such as furosemide and spironolactone are often prescribed to treat ascites, a common complication of cirrhosis. These medications help to reduce fluid buildup in the body by increasing urine output (Burchum & Rosenthal, 2022). Beta-blockers such as propranolol and nadolol are often prescribed to reduce the risk of bleeding from varices, a common complication of portal

hypertension in cirrhosis. They work by reducing the blood pressure in the portal vein, which can help to prevent varices from rupturing (Burchum & Rosenthal, 2022). Lactulose works by increasing the frequency and volume of bowel movements, which helps to remove toxins from the body. Specifically, lactulose is broken down by bacteria in the colon to produce acids that lower the pH of the colon contents. This lowers the amount of ammonia produced by bacteria in the colon and increases the clearance of ammonia from the body (Burchum & Rosenthal, 2022). By reducing the amount of ammonia in the bloodstream, lactulose can help to improve brain function and alleviate symptoms of hepatic encephalopathy.

John was prescribed Lasix, Propranolol, and Lactulose but often did not take his medication due to the side effects they caused like excessive urination and diarrhea, or sometimes he just simply forgot. This is consistent with a study published by Polis et al. (2016) who found 50% of patients with cirrhosis were not taking their medication. This contributed further to the progression of John's disease. John's final hospital admission was related to increased levels of ammonia resulting in severe lethargy.

Nonpharmacologic

The treatment of alcoholic cirrhosis depends on the severity of the disease. In advanced cases like John's, the focus is on managing symptoms and preventing complications. The most important step in managing alcoholic cirrhosis is to stop drinking alcohol completely. This will help slow down the progression of the disease and prevent further liver damage (Patel & Mueller, 2022). Patients with alcoholic cirrhosis often have poor nutritional status due to decreased appetite and malabsorption (Tadokoro et al., 2023). Nutritional support may be provided in the form of a specialized diet or supplements. In cases of advanced cirrhosis, a liver transplant may be considered as a last resort. However, John's lack of alcohol cessation made this

option difficult to pursue. Patients with alcoholic cirrhosis often have underlying psychological issues such as depression and anxiety (Patel & Mueller, 2022). Psychosocial support may be provided in the form of counseling or support groups, this could have helped John manage his addiction and improve his overall well-being.

Procedures

Shortly after John was diagnosed with ALD, his doctor referred him for a Transjugular intrahepatic portosystemic shunt (TIPS). TIPS is a medical procedure used to reduce portal hypertension in patients with liver cirrhosis and portal hypertension. Portal hypertension is a common complication of cirrhosis, in which the blood flow through the liver is blocked, leading to an increase in pressure in the portal vein (Shah et al., 2022). This can result in the development of varices, which are swollen veins in the esophagus, stomach, or intestines that can rupture and cause life-threatening bleeding (Shah et al., 2022). TIPS procedure involves the creation of a shunt between the portal vein and the hepatic vein using a stent, which helps to reduce the pressure in the portal vein and improve blood flow through the liver (Shah et al., 2022). By reducing portal hypertension, TIPS procedure can help to prevent the development of varices and reduce the risk of bleeding. In addition, TIPS procedure can also improve liver function and reduce the risk of other complications associated with cirrhosis, such as ascites and hepatic encephalopathy. John underwent a TIPS procedure, shortly after he was diagnosed with ALD, as a beneficial treatment option for his alcoholic cirrhosis and portal hypertension.

Therapeutic Paracentesis is another medical procedure John was referred for.

Paracentesis is used to remove excess fluid that accumulates in the abdomen of patients with cirrhosis. This fluid, known as ascites, is a common complication of liver cirrhosis, particularly in patients with alcoholic liver disease. Therapeutic paracentesis involves inserting a needle into

the abdomen and draining the excess fluid, which can provide immediate relief of symptoms such as abdominal distension, discomfort, and difficulty breathing (Smith-Hanratty, 2023). In addition to providing symptomatic relief, therapeutic paracentesis can also help to prevent complications such as spontaneous bacterial peritonitis, a serious infection that can occur in patients with ascites (Smith-Hanratty, 2023). Moreover, by removing the excess fluid, therapeutic paracentesis can help to improve liver function and reduce the risk of complications associated with liver cirrhosis, which can ultimately improve the patient's overall quality of life (Smith-Hanratty, 2023). John received therapeutic paracentesis' twice a week during the last several months of his life, draining 10 liters of fluid with each procedure. During the procedure, he would receive IV albumin to prevent post-paracentesis circulatory dysfunction (PPCD) which is a complication from removal of a large amount of fluid that can result in a decrease in blood volume and a drop in blood pressure and is associated with a higher risk of complications, including kidney failure, infection, and death (Smith-Hanratty, 2023).

Outcomes

The outlook for individuals with early-stage liver disease is favorable as ceasing alcohol consumption may reverse steatosis and steatohepatitis lesions. Nevertheless, up to 20% of patients with steatosis may advance to cirrhosis, which is associated with irreversible lesions and a dismal prognosis (Patel & Mueller, 2022). Alcoholic cirrhosis is characterized by the development of fibrosis and scarring of the liver tissue, which can lead to a wide range of complications, including portal hypertension, ascites, hepatic encephalopathy, and liver failure. Without proper treatment, alcoholic cirrhosis can be a life-threatening condition, with a poor prognosis. The 5-year survival rate for patients with alcoholic cirrhosis is estimated to be around 50%, and the mortality rate increases as the severity of the disease progresses (Patel & Mueller,

2022). However, with early diagnosis and appropriate medical management, the progression of the disease can be slowed or even halted, improving the patient's quality of life and prognosis. This often involves abstaining from alcohol, managing complications such as ascites and hepatic encephalopathy, and in some cases, liver transplantation.

Conclusion

John's case highlights the complex interplay between socioeconomic factors, pathophysiology, and treatment in the management of advanced alcoholic cirrhosis. The lack of access to medical care due to his lack of medical insurance delayed diagnosis and made managing his condition more difficult. Additionally, the presence of ascites, severe encephalopathy, variceal bleeding, and hepatorenal syndrome implied a poor prognosis. Unfortunately, John passed away at the young age of 48. It is important to recognize the importance of addressing both the medical and psychosocial aspects of the disease to provide comprehensive care to patients with alcoholic cirrhosis. New methods for reliable and rapid ALD diagnosis remain in great demand in general practice. Routine screenings and public awareness can help to decrease the incidence of ALD and the growing global problem of alcohol consumption.

References

- de Boer, N., Vermeulen, J., Lin, B., van Os, J., ten Have, M., de Graaf, R., van Dorsselaer, S., Bak, M., Rutten, B., Batalla, A., Guloksuz, S., & Luykx, J. J. (2023). Longitudinal associations between alcohol use, smoking, genetic risk scoring and symptoms of depression in the general population: a prospective 6-year cohort study. *Psychological Medicine*, *53*(4), 1409–1417. https://doi-org.libproxy.umassd.edu/10.1017/S0033291721002968
- Burchum, J. R., & Rosenthal, L. D. (2022). *Lehne's pharmacology for Nursing Care: Study Guide* (11th ed.). Elsevier Inc.
- Centers for Disease Control and Prevention. (2022, November 28). *Data on Excessive Drinking*.

 Alcohol and Public Health. Retrieved April 15, 2023, from

 https://www.cdc.gov/alcohol/data-stats.htm
- Centers for Disease Control and Prevention. (2022, March 2). Stats of the states chronic liver disease/cirrhosis. National Center for Health Statistics. Retrieved April 16, 2023, from https://www.cdc.gov/nchs/pressroom/sosmap/liver disease mortality/liver disease.htm
- Desai, A. P., Mohan, P., Roubal, A. M., Bettencourt, R., & Loomba, R. (2018). Geographic variability in liver disease-related mortality rates in the United States. *The American Journal of Medicine*, 131(7), 728–734.
- Guy, J., & Peters, M. G. (2013, October). Liver disease in women: The influence of gender on epidemiology, natural history, and patient outcomes. Gastroenterology & hepatology.

- Retrieved April 20, 2023, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3992057/
- Huang, D. Q., Mathurin, P., Cortez-Pinto, H., & Loomba, R. (2023). Global epidemiology of alcohol-associated cirrhosis and HCC: trends, projections and risk factors. *Nature Reviews Gastroenterology & Hepatology*, 20(1), 37–49. https://doiorg.libproxy.umassd.edu/10.1038/s41575-022-00688-6
- Osna, N. A., Donohue, T. M., & Kharbanda, K. K. (2017). *Alcoholic liver disease: Pathogenesis and current management*. Alcohol research: current reviews. Retrieved April 19, 2023, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5513682/
- Patel, R., & Mueller, M. (2022, October 24). Alcoholic Liver Disease. National Library of Medicine. Retrieved April 21, 2023, from https://www.ncbi.nlm.nih.gov/books/NBK546632/
- Polis, S., Zang, L., Mainali, B., Pons, R., Pavendranathan, G., Zekry, A., & Fernandez, R. (2016). Factors associated with medication adherence in patients living with cirrhosis. *Journal of Clinical Nursing (John Wiley & Sons, Inc.)*, 25(1–2), 204–212. https://doi-org.libproxy.umassd.edu/10.1111/jocn.13083
- Ramstedt, M., Raninen, J., Larm, P., & Livingston, M. (2023). Children with problem-drinking parents in a Swedish national sample: is the risk of harm related to the severity of parental problem drinking? *European Journal of Public Health*, 33(2), 312–316. https://doi-org.libproxy.umassd.edu/10.1093/eurpub/ckad022
- Ross-Houle, K., & Porcellato, L. (2023). Recovery capital in the context of homelessness, high levels of alcohol consumption, and adverse significant life events. *Drugs: Education*,

- *Prevention & Policy*, *30*(2), 173–184. https://doiorg.libproxy.umassd.edu/10.1080/09687637.2021.2014402
- Shah, R. J., Alqadi, M. M., Duvvuri, M., Kim, Y.-J., Tyagi, R., Lokken, R. P., & Gaba, R. C. (2022). Clinical Outcomes and Patency after Transjugular Intrahepatic Portosystemic Shunt Reduction for Overshunting Adverse Events. *Journal of Vascular & Interventional Radiology*, 33(12), 1507–1512. https://doiorg.libproxy.umassd.edu/10.1016/j.jvir.2022.08.007
- Shah, N. D., Ventura-Cots, M., Abraldes, J. G., Alboraie, M., Alfadhli, A., Argemi, J., Badia-Aranda, E., Arús-Soler, E., Barritt, A. S., Bessone, F., Biryukova, M., Carrilho, F. J., Fernández, M. C., Dorta Guiridi, Z., El Kassas, M., Eng-Kiong, T., Queiroz Farias, A., George, J., Gui, W., ... Bataller, R. (2019, October). *Alcohol-related liver disease is rarely detected at early stages compared with liver diseases of other etiologies worldwide*. Clinical gastroenterology and hepatology: the official clinical practice journal of the American Gastroenterological Association. Retrieved April 19, 2023, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6682466/
- Smith-Hanratty, B. (2023). Performing Abdominal Paracentesis. *Journal for Nurse Practitioners*, 19(3), N.PAG. https://doiorg.libproxy.umassd.edu/10.1016/j.nurpra.2022.104534
- Tadokoro, T., Morishita, A., Himoto, T., & Masaki, T. (2023). Nutritional Support for Alcoholic Liver Disease. *Nutrients*, *15*(6), 1360. https://doi-org.libproxy.umassd.edu/10.3390/nu15061360

- U.S. Department of Health and Human Services. (n.d.). *National Institute on Alcohol Abuse and Alcoholism (NIAAA)*. National Institute on Alcohol Abuse and Alcoholism. Retrieved April 19, 2023, from https://www.niaaa.nih.gov/
- Ventura-Cots, M., Watts, A. E., & Bataller, R. (2017, September). *Binge drinking as a risk factor* for advanced alcoholic liver disease. Liver international: official journal of the International Association for the Study of the Liver. Retrieved April 19, 2023, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5656398/
- World Health Organization. (n.d.). *Alcohol*. World Health Organization. Retrieved April 16, 2023, from https://www.who.int/health-topics/alcohol#tab=tab 1
- Xiao, J., Wang, F., Wong, N.-K., Lv, Y., Liu, Y., Zhong, J., Chen, S., Li, W., Koike, K., Liu, X.,
 & Wang, H. (2020, November 11). *Epidemiological realities of alcoholic liver disease:*Global burden, research trends, and therapeutic promise. Gene expression. Retrieved
 April 20, 2023, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7650014/